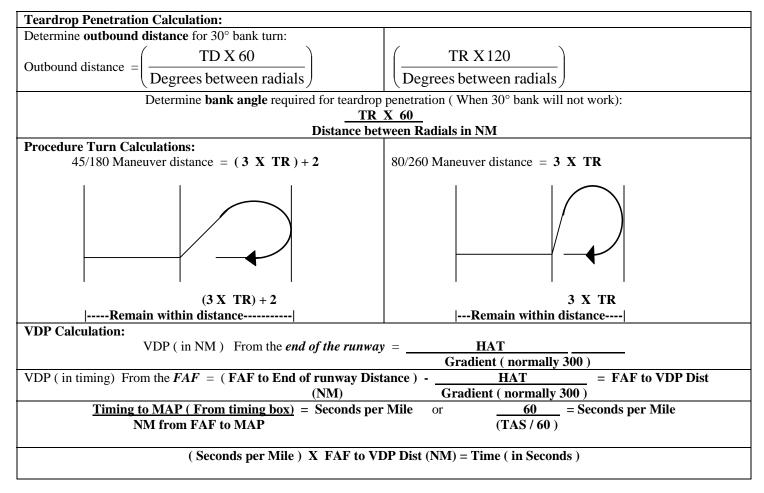
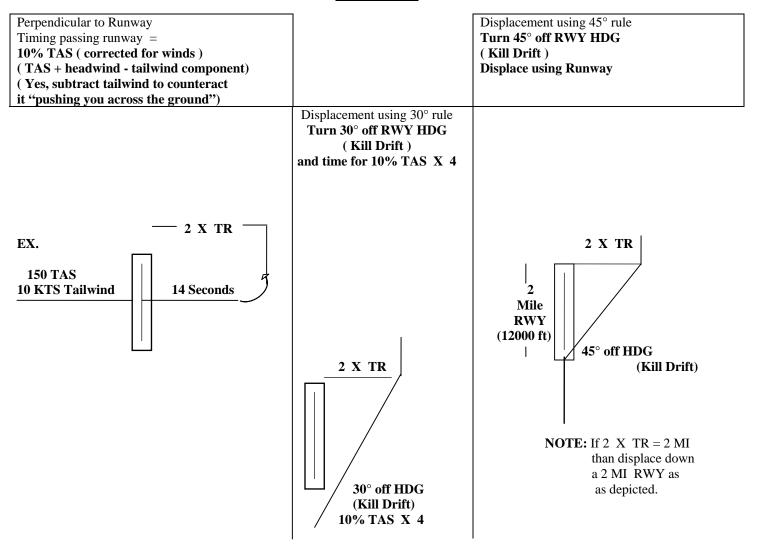
SUMMARY OF 60:1 RULES AND FORMULAS <u>CLIMBS AND DESCENTS</u>

The 60:1 Rule:	$1^{\circ} = 1$ NM at 60 NM	$1^{\circ} = 100 \text{ FT}$		Γ at 1 NM	
Climb and Descent Gradients:					
Required gradient (FT/NM) = <u>altitude to lose (or gain)</u>		Pitch change =	<u>gradient</u>	(1° pitch change = 100 FT/NM)	
distance to travel			100		
VVI:					
VVI = Gradient (or pitch X 100) X TAS in minutes					
VVI for a 3° glideslope = $\left(\frac{\text{GndSpd X 10}}{2}\right)$		VVI for a 2.5° glideslope = $\left(\frac{\text{GndSpd X }10}{2}\right) - 100$			
Determine TAS and NM/MIN: TAS = IMN X 600	$TAS = IAS + \frac{FL}{2}$		$TAS = IAS + \left(\frac{5kt}{1000}\right)$		
			Note.	works well for the 200-300 knot range	
NM/MIN = IMN X 10	TAS = 2% of IAS per 1	TAS = 2% of IAS per 1000'		$= \left(\frac{\text{TAS}}{60}\right)$	
Steps to Determine Required Pitch and VVI (Winded Application). Mathematical steps:					
Required gradient: Gradient = <u>Alt to lose</u>					
Dist to travel					
Required VVI with wind: VVI = gradient X groundspeed (NM/MIN)			N) N	OTE: For practical applications, each	
Required pitch change: Pitch change = <u>required VVI</u>			60	KTS of wind will change pitch 1°.	
TAS (in NM/MIN)					


TURNS

Turn Radius (TR)	Turn Diameter (TD) = 2 X TR				
Distance to turn 90° using 30° of bank:					
8	TR = (IMN X 10) - 2				
$TR = (NM/MIN)^2$ or	$TR = IMN^2 X 10$				
10					
Distance to turn 90° using SRTs and 1/2 SRTs:					
SRT = .5% of TAS (or groundspeed)	1/2 SRT = 1% of TAS (or groundspeed)				
Bank for Rate Turns:					
Bank for SRT = $\left(\frac{\text{TAS}}{10}\right) + 7$	Bank for 1/2 SRT = $\left(\frac{TAS}{20}\right) + 7$				
Lead Point for Radial to an Arc or 90° Intercept of an Arc:					
Lead point in DME = Desired Arc \pm TR					
Lead Point for Arc to Radial or 90° Intercept of a Radial:					
Lead point (in degrees) = $\left(\frac{60}{\text{Arc}}\right) \mathbf{X}$ TR (in NM) or	$\left(\frac{60}{\text{DME}}\right) \mathbf{X} \ \mathbf{TR} \ (\mathbf{in} \ \mathbf{NM})$				
For Turns Less or More Than 90°, Use The Following: (These cover most situations):					
Degrees to Turn Fraction of 90° Turn	Degrees to Turn Fraction of 90° Turn				
180° - 2	90° - 1				
150° - 15/6	60° - 1/2				
135° - 12/3	45° - 1/3				
120° - 11/2	30° - 1/6				
Bank Angle Required to Maintain an Arc:					
Required bank angle = $\left(\frac{30}{\text{Arc}}\right)$ X TR (Use IMN squared for TR to obtain best results)					
or Required Bank angle = $\left(\frac{\text{Radial Lead Point}}{2}\right)$					


HOLDING

Teardrop Holding Calculations:			
Offset in degrees = $TD \times 60$ or	TR X 120		
outbound distance	outbound distance		
Timing: $\leq 14,000 = 1+00$	>14,000 = 1+30		
Outbound Correction for Inbound:			
1+00 Correction = $\left(\frac{3600}{\text{inbound time}}\right)$ = outbound time	ne $1+30$ Correction = $\left(\frac{8100}{\text{inbound time}}\right)$ = outbound time		
Double Drift:			
Into wind turn = 30° bank - 1° for every deg of drift			
Inbound to fix = course heading \pm drift	Outbound leg = outbound heading \pm (drift X 2)		
	Hold double drift for same amount of time as the 180° turn		
Drift calculation:			
Drift = <u>Crosswind Component</u>	$180^{\circ} \text{ turn} = \frac{1\% \text{ TAS}}{2}$		
NM/MIN of TAS	-		
	Ex. 240 TAS = 2.4 / 2 = 1.2 Min = 1 + 12		
Triple drift:			
Into Wind Turn = 30° bank	Other Turn = 30° bank		
Inbound to fix = Course heading \pm drift	Outbound leg = outbound heading \pm (drift X 3)		
	Hold triple drift for same amount of time as the 180° turn		
Drift Calculation:			
Drift = Crosswind component	$180^{\circ} \text{ turn } = \frac{1\% \text{ TAS}}{2}$		
NM/MIN of TAS	—		
	Ex. 240 TAS = 2.4 / 2 = 1.2 Min = 1 + 12		

APPROACH

CIRCLE

